(2)合理的熔炼工艺 正确选择原材料,去除金属上的锈蚀,油污,熔剂烘干,在熔炼
程中尽量使金属液不接触或少接触有害气体;对某些合金充分脱氧或精炼去气,减少其中
非金属夹杂物和气体。多次熔炼的铸铁和废钢,由于其中含有较多的气体,应尽量减少用
;采用 “高温出炉,低温浇注”工艺等。
2铸型性质方面的因素
铸型的阻力影响金属液的充型速度,铸型与金属的热交换强度影响金属液保持流动的时
。所以,铸型性质方面的因素对金属液的充型能力有重要的影响。同时,通过调整铸型性
来改善金属的充型能力,也往往能得到较好的效果。
晶体中每个原子皆在平衡位置附近振动 (即所谓热振
动),温度升高时振动能量增加,振动频率和振幅加大。
以双原子为模型 (图12),假设左边的原子在坐标原点被
固定,而右边的原子是自由的。当温度升高时,右边自由
振动原子的振幅增大,此时,若该原子以R0 为原点作简谐振动,则其平衡位置仍是R0,这
样就不会发生膨胀。但势能曲线向右是水平渐近线,向左是垂直渐近线,是极不对称的。
方程式(118)给出的是各参量之间的最普遍关系,它可以确定一切固体内的导热现象。
因此,导热微分方程可以用来确定铸件和铸型的温度场。由于导热微分方程式是一个基本方
程式,用它来解决某一具体问题时,为了使方程式的解
确实成为该具体问题的解,就必须对基本方程式补充一
些附加条件。这些附加条件就是一般所说的单值性条件。
它们把所研究的特殊问题从普遍现象中区别出来。
在不稳定导热(tτ≠0)的情况下,导热微分方程的解
具有非常复杂的形式。目前只能用来解决某些特殊的问
题。例如,对于形状最简单的物体 (如平壁、圆柱、
球),它们的温度场都是一维的,可以得到解决。