(3)铸型中的气体 铸型有一定的发气能力,能在金属液与铸型之间形成气膜,可减小
的摩擦阻力,有利于充型。
根据实验,湿型中加入质量分数小于6%的水和小于7%的煤粉时,液态金属的充型能
高,高于此值时型腔中气体反压力增大,充型能力下降,如图122所示。型腔中气体
91
反压力较大的情况下,金属液可能浇不进去,或者浇
口杯、顶冒口中出现翻腾现象,甚至飞溅出来伤人。
所以,铸型中的气体对充型能力影响很大。
因此,实际金属和合金的液体结构中存在着两种起伏:一种是能
量起伏,表现为各个原子间能量的不同和各个原子集团间尺寸的不同;另一种是浓度起伏,
表现为各个原子集团之间成分的不同。
如果AB原子间的结合力较强,则足以在液体中形成新的化学键,在热运动的作用下,
出现时而化合,时而分解的分子,也可称为临时的不稳定化合物,或者在低温时化合,在高
温时分解。例如,硫在铁液中高温时可以完全溶解,而在较低温度下则可能析出FeS。当
AB原子间或同类原子间结合非常强时,则可以形成比较强而稳定的结合,在液体中就出现
新的固相 (如氧在铝中形成Al2O3,氧与铁中的硅形成SiO2 等)或气相。
而是在铸件最后凝固的部位留下集中的缩孔,如图136所示。由于集中缩孔容易消除 (如设置冒口),一般认为这类合金
的补缩性良好。在板状和棒状铸件上会出现中心线缩孔。这类合金铸件在凝固过程中,当收
缩受阻而产生晶间裂纹时,也容易得到金属液的充填,使裂纹愈合,所以铸件的热裂倾向
性小。
宽结晶温度范固的合金 (如高碳钢、球墨铸铁、铝铜合金、铝镁合金、镁合金等)铸件
图137 体积凝固方式的缩松的凝固区域宽,液态金属的过冷很小,容易发展成为树枝发达
的粗大等轴晶组织。当粗大的等轴晶相互连接以后 (固相约占
70%),便将尚未凝固的液态金属分割为一个个互不沟通的溶池,最后在铸件中形成分散性的缩孔即缩松。