这就意味着当温度升高,能量从W0→W1→W2→W3→W4 时,其间距 (振幅中心位置)将由
R0→R1→R2→R3→R4。也就是说,原子间距离将随温度的升高而增加,即产生热膨胀。另
一方面,空穴的产生也是物体膨胀的原因之一。由于能量起伏,一些原子则可能越过势垒跑
到原子之间的间隙中或金属表面,而失去大量能量,在新的位置上作微小振动 (图13)。
有机会获得能量,又可以跑到新的位置上。如此下去,它可以在整个晶体中 “游动”,这个
过程称为内蒸发。原子离开点阵后,留下了自由点阵———空穴。
减小铸型中气体反压力的途径有两条。一条是适当低型砂中的含水量和发气物质的含量,亦即减小
砂型的发气性;另一条途径是提高砂型的透气性,在砂型上扎通气孔,或在离浇注端最远或高部位设通
气冒口,增加砂型的排气能力。
3浇注条件方面的因素
(1)浇注温度 浇注温度对液态金属的充型能力
有决定性的影响。浇注温度越高,充型能力越好。在
一定温度范围内,充型能力随浇注温度的提高而直线
上升。超过某界限后,由于金属吸气多,氧化严重,充型能力的提高幅度越来越小。对于薄
壁铸件或流动性差的合金,利用提高浇注温度改善充型能力的措施,在生产中经常采用,也
比较方便。但是,随着浇注温度的提高,铸件一次结晶组织粗大,容易产生缩孔、缩松、粘
砂、裂纹等缺陷,因此必须综合考虑,谨慎使用。
3表面张力引起的附加压力
假设液体中有一半径为r的球形气泡,
由于液体表面张力造成了指向内部的力p
(图113)。若将球的体积增大ΔV,则必须
克服阻力p而对它做功:ΔW=pΔV。而
这一所做之功变为表面积增大后的表面自
由能增量:ΔF=σΔS(ΔS为球体增大之表面积)
由此可见,因表面张力而造成的附加压力p的大小与曲率半径r成反比。则r1=r2=r。附加压力p也称拉普拉斯压力。
如液面凸起 (不润湿),附加压力为正值,液面下凹 (润湿),附加压力为负值,如图
4所示。造型材料一般不被液态金属润湿,即θ>90°(θ为润湿角)。故液态金属在铸型
道内的表面是凸起的,如图115所示,此时产生指向内部的附加压力。